Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
Infect Dis Model ; 7(2): 189-195, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1867204

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) outbreak on the Diamond Princess (DP) ship has caused over 634 cases as of February 20, 2020. We model the transmission process on DP ship as a stochastic branching process, and estimate the reproduction number at the innitial phase of 2.9 (95%CrI: 1.7-7.7). The epidemic doubling time is 3.4 days, and thus timely actions on COVID-19 control were crucial. We estimate the COVID-19 transmissibility reduced 34% after the quarantine program on the DP ship which was implemented on February 5. According to the model simulation, relocating the population at risk may sustainably decrease the epidemic size, postpone the timing of epidemic peak, and thus relieve the tensive demands in the healthcare. The lesson learnt on the ship should be considered in other similar settings.

3.
International Journal of Infectious Diseases ; 95:308-310, 2020.
Article in English | CAB Abstracts | ID: covidwho-1409687

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) outbreak has caused 6088 cases and 41 deaths in Republic of Korea, and 3144 cases and 107 death in Italy by 5 March 2020, respectively. We modelled the transmission process in the Republic of Korea and Italy with a stochastic model, and estimated the basic reproduction number R0 as 2.6 (95% CI: 2.3-2.9) or 3.2 (95% CI: 2.9-3.5) in the Republic of Korea, under the assumption that the exponential growth starting on 31 January or 5 February 2020, and 2.6 (95% CI: 2.3-2.9) or 3.3 (95% CI: 3.0-3.6) in Italy, under the assumption that the exponential growth starting on 5 February or 10 February 2020, respectively.

4.
International Journal of Infectious Diseases ; 94:29-31, 2020.
Article in English | CAB Abstracts | ID: covidwho-1409686

ABSTRACT

As of March 1, 2020, Iran had reported 987 novel coronavirus disease (COVID-19) cases, including 54 associated deaths. At least six neighboring countries (Bahrain, Iraq, Kuwait, Oman, Afghanistan, and Pakistan) had reported imported COVID-19 cases from Iran. In this study, air travel data and the numbers of cases from Iran imported into other Middle Eastern countries were used to estimate the number of COVID-19 cases in Iran. It was estimated that the total number of cases in Iran was 16 533 (95% confidence interval: 5925-35 538) by February 25, 2020, before the UAE and other Gulf Cooperation Council countries suspended inbound and outbound flights from Iran.

5.
International Journal of Infectious Diseases ; 94:145-147, 2020.
Article in English | CAB Abstracts | ID: covidwho-1409638

ABSTRACT

Asymptomatic transmission of the coronavirus disease 2019 is an important topic. A recent study in China showed that transmissibility of the asymptomatic cases is comparable to that of symptomatic cases. Here, we discuss that the conclusion may depend on how we interpret the data. To the best of our knowledge, this is the first time the relative transmissibility of asymptomatic COVID-19 infections is quantified.

6.
Front Public Health ; 9: 697491, 2021.
Article in English | MEDLINE | ID: covidwho-1359261

ABSTRACT

Background: Several recent studies reported a positive (statistical) association between ambient nitrogen dioxide (NO2) and COVID-19 transmissibility. However, considering the intensive transportation restriction due to lockdown measures that would lead to declines in both ambient NO2 concentration and COVID-19 spread, the crude or insufficiently adjusted associations between NO2 and COVID-19 transmissibility might be confounded. This study aimed to investigate whether transportation restriction confounded, mediated, or modified the association between ambient NO2 and COVID-19 transmissibility. Methods: The time-varying reproduction number (Rt ) was calculated to quantify the instantaneous COVID-19 transmissibility in 31 Chinese cities from January 1, 2020, to February 29, 2020. For each city, we evaluated the relationships between ambient NO2, transportation restriction, and COVID-19 transmission under three scenarios, including simple linear regression, mediation analysis, and adjusting transportation restriction as a confounder. The statistical significance (p-value < 0.05) of the three scenarios in 31 cities was summarized. Results: We repeated the crude correlational analysis, and also found the significantly positive association between NO2 and COVID-19 transmissibility. We found that little evidence supported NO2 as a mediator between transportation restriction and COVID-19 transmissibility. The association between NO2 and COVID-19 transmissibility appears less likely after adjusting the effects of transportation restriction. Conclusions: Our findings suggest that the crude association between NO2 and COVID-19 transmissibility is likely confounded by the transportation restriction in the early COVID-19 outbreak. After adjusting the confounders, the association between NO2 and COVID-19 transmissibility appears unlikely. Further studies are warranted to validate the findings in other regions.


Subject(s)
COVID-19 , Nitrogen Dioxide , Cities , Communicable Disease Control , Humans , Nitrogen Dioxide/analysis , SARS-CoV-2
9.
Ann Transl Med ; 9(3): 200, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1110875

ABSTRACT

BACKGROUND: The 76-day lockdown of Wuhan city has successfully contained the first wave of the coronavirus disease 2019 (COVID-19) outbreak. However, to date few studies have evaluated the hospital bed shortage for COVID-19 during the lockdown and none for non-COVID-19 patients, although such data are important for better preparedness of the future outbreak. METHODS: We built a compartmental model to estimate the daily numbers of hospital bed shortage for patients with mild, severe and critical COVID-19, taking account of underreport and diagnosis delay. RESULTS: The maximal daily shortage of inpatient beds for mild, severe and critical COVID-19 patients was 43,960 (95% confidence interval: 35,246, 52,929), 2,779 (1,395, 4,163) and 196 (143, 250) beds in early February 2020. An earlier or later lockdown would have greatly increased the shortage of hospital beds in Wuhan. The overwhelmed healthcare system might have delayed the provision of health care to both COVID-19 and non-COVID-19 patients during the lockdown. The second wave in Wuhan could have occurred in June 2020 if social distancing measures had waned in early March 2020. The hospital bed shortage was estimated much smaller in the potential second wave than in the first one. CONCLUSIONS: Our findings suggest that the timing and strength of lockdown is important for the containment of the COVID-19 outbreaks. The healthcare needs of non-COVID-19 patients in the pandemic warrant more investigations.

10.
Transl Pediatr ; 10(1): 92-102, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1106648

ABSTRACT

BACKGROUND: In response to the ongoing epidemic of coronavirus disease 2019 (COVID-19), China has carried out restrictive disease containment measures across the country. METHODS: In this cross-sectional study, we collected demographic and epidemiological data of 376 laboratory-confirmed cases of COVID-19 among children younger than 18 years of age. Using descriptive statistics and odds ratios, we described the odds of exposure outside the family after the implementation of control measures compared to before. RESULTS: Children diagnosed on or after February 4, 2020, had a lower odds of exposure to COVID-19 outside of the family compared to those diagnosed before February 3, 2020 (OR =0.594, 95% CI: 0.391 to 0.904). In the stratified analysis, children aged 0 to 5 years had the lowest odds of exposure outside of the family (OR =0.420, 95% CI: 0.196 to 0.904) compared to the other age groups assessed. CONCLUSIONS: Our study on the children infected with COVID-19 as well as their exposure within family provided evidence that the implementation of containment measures was effective in reducing the odds of exposure outside of the family, especially for preschool children. Continuation of these efforts, coupled with tailored prevention and health education messaging for younger aged children, may help to reduce the transmission of COVID-19 among children until other therapeutic interventions or vaccines are available.

11.
Diabetes ; 70(5): 1061-1069, 2021 05.
Article in English | MEDLINE | ID: covidwho-1088886

ABSTRACT

Obesity has caused wide concerns due to its high prevalence in patients with severe coronavirus disease 2019 (COVID-19). Coexistence of diabetes and obesity could cause an even higher risk of severe outcomes due to immunity dysfunction. We conducted a retrospective study in 1,637 adult patients who were admitted into an acute hospital in Wuhan, China. Propensity score-matched logistic regression was used to estimate the risks of severe pneumonia and requiring in-hospital oxygen therapy associated with obesity. After adjustment for age, sex, and comorbidities, obesity was significantly associated with higher odds of severe pneumonia (odds ratio [OR] 1.47 [95% CI 1.15-1.88]; P = 0.002) and oxygen therapy (OR 1.40 [95% CI 1.10-1.79]; P = 0.007). Higher ORs of severe pneumonia due to obesity were observed in men, older adults, and those with diabetes. Among patients with diabetes, overweight increased the odds of requiring in-hospital oxygen therapy by 0.68 times (P = 0.014) and obesity increased the odds by 1.06 times (P = 0.028). A linear dose-response curve between BMI and severe outcomes was observed in all patients, whereas a U-shaped curve was observed in those with diabetes. Our findings provide important evidence to support obesity as an independent risk factor for severe outcomes of COVID-19 infection in the early phase of the ongoing pandemic.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Obesity/epidemiology , Age Factors , Aged , Body Mass Index , COVID-19/physiopathology , COVID-19/therapy , China/epidemiology , Extracorporeal Membrane Oxygenation , Female , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Overweight/epidemiology , Oxygen Inhalation Therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Sex Factors
12.
BMC Public Health ; 20(1): 1558, 2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-873968

ABSTRACT

The individual infectiousness of coronavirus disease 2019 (COVID-19), quantified by the number of secondary cases of a typical index case, is conventionally modelled by a negative-binomial (NB) distribution. Based on patient data of 9120 confirmed cases in China, we calculated the variation of the individual infectiousness, i.e., the dispersion parameter k of the NB distribution, at 0.70 (95% confidence interval: 0.59, 0.98). This suggests that the dispersion in the individual infectiousness is probably low, thus COVID-19 infection is relatively easy to sustain in the population and more challenging to control. Instead of focusing on the much fewer super spreading events, we also need to focus on almost every case to effectively reduce transmission.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Binomial Distribution , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology
13.
Ann Transl Med ; 8(4): 128, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-854838

ABSTRACT

BACKGROUND: An ongoing outbreak of pneumonia caused by a novel coronavirus [severe acute respiratory syndrome coronavirus (SARS-CoV)-2], named COVID-19, hit a major city of China, Wuhan in December 2019 and subsequently spread to other provinces/regions of China and overseas. Several studies have been done to estimate the basic reproduction number in the early phase of this outbreak, yet there are no reliable estimates of case fatality rate (CFR) for COVID-19 to date. METHODS: In this study, we used a purely data-driven statistical method to estimate the CFR in the early phase of the COVID-19 outbreak. Daily numbers of laboratory-confirmed COVID-19 cases and deaths were collected from January 10 to February 3, 2020 and divided into three clusters: Wuhan city, other cities of Hubei province, and other provinces of mainland China. Simple linear regression model was applied to estimate the CFR from each cluster. RESULTS: We estimated that CFR during the first weeks of the epidemic ranges from 0.15% (95% CI: 0.12-0.18%) in mainland China excluding Hubei through 1.41% (95% CI: 1.38-1.45%) in Hubei province excluding the city of Wuhan to 5.25% (95% CI: 4.98-5.51%) in Wuhan. CONCLUSIONS: Our early estimates suggest that the CFR of COVID-19 is lower than the previous coronavirus epidemics caused by SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).

14.
Hypertens Res ; 43(11): 1267-1276, 2020 11.
Article in English | MEDLINE | ID: covidwho-733529

ABSTRACT

Hypertension is a common comorbidity in hospitalized patients with COVID-19 infection. This study aimed to estimate the risks of adverse events associated with in-hospital blood pressure (BP) control and the effects of angiotensin II receptor blocker (ARB) prescription in COVID-19 patients with concomitant hypertension. In this retrospective cohort study, the anonymized medical records of COVID-19 patients were retrieved from an acute field hospital in Wuhan, China. Clinical data, drug prescriptions, and laboratory investigations were collected for individual patients with diagnosed hypertension on admission. Cox proportional hazards models were used to estimate the risks of adverse outcomes associated with BP control during the hospital stay. Of 803 hypertensive patients, 67 (8.3%) were admitted to the ICU, 30 (3.7%) had respiratory failure, 26 (3.2%) had heart failure, and 35 (4.8%) died. After adjustment for confounders, the significant predictors of heart failure were average systolic blood pressure (SBP) (hazard ratio (HR) per 10 mmHg 1.89, 95% confidence interval (CI): 1.15, 3.13) and pulse pressure (HR per 10 mmHg 2.71, 95% CI: 1.39, 5.29). The standard deviations of SBP and diastolic BP were independently associated with mortality and ICU admission. The risk estimates of poor BP control were comparable between patients receiving ARBs and those not receiving ARBs, with the only exception of a high risk of heart failure in the non-ARB group. Poor BP control was independently associated with higher risks of adverse outcomes of COVID-19. ARB drugs did not increase the risks of adverse events in hypertensive patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Hypertension/complications , Pneumonia, Viral/complications , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Blood Pressure/drug effects , COVID-19 , Coronavirus Infections/mortality , Female , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Proportional Hazards Models , Retrospective Studies , SARS-CoV-2
15.
Int J Infect Dis ; 99: 3-7, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-676775

ABSTRACT

BACKGROUND: Few studies have explored air and surface contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in healthcare settings. METHODS: Air and surface samples were collected from the isolation wards and intensive care units designated for coronavirus disease 2019 (COVID-19) patients. Clinical data and the results of nasopharyngeal specimen and serum antibody testing were also collected for the patient sample. RESULTS: A total of 367 air and surface swab samples were collected from the patient care areas of 15 patients with mild COVID-19 and nine patients with severe/critical COVID-19. Only one air sample taken during the intubation procedure tested positive. High-touch surfaces were slightly more likely to be contaminated with SARS-CoV-2 RNA than low-touch surfaces. Contamination rates were slightly higher near severe/critical patients than near mild patients, although this difference was not statistically significant (p > 0.05). Surface contamination was still found near the patients with both positive IgG and IgM. CONCLUSIONS: Air and surface contamination with viral RNA was relatively low in these healthcare settings after the enhancement of infection prevention and control. Environmental contamination could still be found near seroconverted patients, suggesting the need to maintain constant vigilance in healthcare settings to reduce healthcare-associated infection during the COVID-19 pandemic.


Subject(s)
Air Microbiology , Betacoronavirus , Coronavirus Infections/virology , Fomites , Pneumonia, Viral/virology , Tertiary Care Centers , COVID-19 , China , Humans , Intensive Care Units , Pandemics , SARS-CoV-2
16.
Int J Infect Dis ; 98: 67-70, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-619520

ABSTRACT

We compared the COVID-19 and 1918-19 influenza pandemics in the United Kingdom. We found that the ongoing COVID-19 wave of infection matched the major wave of the 1918-19 influenza pandemic surprisingly well, with both reaching similar magnitudes (in terms of estimated weekly new infections) and spending the same duration with over five cases per 1000 inhabitants over the previous two months. We also discussed the similarities in epidemiological characteristics between these two pandemics.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Influenza Pandemic, 1918-1919 , Influenza, Human/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology
17.
Int J Infect Dis ; 2020.
Article | WHO COVID | ID: covidwho-264971

ABSTRACT

BACKGROUNDS: The emerging virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large outbreak of coronavirus disease COVID-19 in Wuhan, China since December 2019. The COVID-19 soon spread to other regions of China and overseas. In Hong Kong, local mitigation measures have been implemented since the first imported case was confirmed on January 23, 2020. Here we evaluated the temporal variation of detection delay from symptoms onset to laboratory confirmation of SARS-CoV-2 in Hong Kong. METHODS: A regression model is adopted to quantify the association between the SARS-CoV-2 detection delay and the calendar time. The association is tested and further validated by a Cox proportional hazard model. FINDINGS: The estimated median detection delay was 9.5 days (95%CI: 6.5-11.5) in the second half of January, and reduced to 6.0 days (95%CI: 5.5-9.5) in the first half of February 2020. We estimate that the SARS-CoV-2 detection efficiency improves at a daily rate of 5.40% (95%CI: 2.54-8.33) in Hong Kong. CONCLUSION: The detection efficiency of SARS-CoV-2 was likely being improved substantially in Hong Kong since the first imported case was detected. The sustaining enforcement in timely detection and other effective control measures are recommended to prevent the SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL